Agenda

Presented by Jason Morosko, MSME, CPHC

Understanding the Energy Efficiency of Conventional Construction
- Conventional residential energy use
- History of energy-conserving residential construction
- Energy conservation incentives
- Current weatherization tactics

Passive House Standard: Purpose, Principles and Development
- History of certifying agencies in US: PHI and PHIUS
- Passive House Standard: voluntary performance-based building envelope energy standard
- Passive House energy calculations
- Energy calculation tools: an introduction to tools and their functionality
- Assembling a team to ensure quality and performance
- Examining common design features of Passive Houses

Elements of Passive House Design
- Siting, sizing and orientation
- Super-insulated envelope with minimized thermal bridging
- Efficient mechanical ventilation
- Ultra-efficient lights, fixtures and appliances - plug loads
- Summer shading and cooling strategies
- Winter solar gain and heat retention strategies
- Integrating renewable energy technologies

Mechanical Systems in Passive House
- Heat exchangers
- Supplemental space conditioning for micro loads
- Renewable energy system integration

Evaluating Passive House Case Studies
- Adapting Passive House for local climate
- Case studies: in the planning process, under construction and finished projects

Learning Objectives

You’ll be able to:

Explore the history of energy-conserving residential construction, and explore the development of the Passive House Standard.

Understand the requirements of Passive House, a voluntary performance-based building envelope energy standard.

Discuss energy calculation tools and review design features common to Passive Houses.

Integrate renewable energy technologies into your Passive House design.

Evaluate mechanical systems, including heat exchangers.

Adapt Passive House for local climates.

Passive House: Planning and Design
Roanoke, VA - Wednesday, August 7, 2019

Understanding the energy efficiency of conventional construction
Examine the purpose, principles and development of the Passive House Standard
Identify elements of Passive House design

Professional Engineers
6.5 Continuing Ed. Hours

Architects
6.5 HSW Continuing Ed. Hours
6.5 AIA HSW Learning Units

Construction Contractors
Non-Credit Continuing Ed.

Learn about mechanical systems in Passive Houses
Explore winter solar gain and summer shading strategies
Discuss case studies that illustrate the planning process, construction techniques and finished projects

Presented by Jason Morosko, MSME, CPHC

Understanding the Energy Efficiency of Conventional Construction
- Conventional residential energy use
- History of energy-conserving residential construction
- Energy conservation incentives
- Current weatherization tactics

Passive House Standard: Purpose, Principles and Development
- History of certifying agencies in US: PHI and PHIUS
- Passive House Standard: voluntary performance-based building envelope energy standard
- Passive House energy calculations
- Energy calculation tools: an introduction to tools and their functionality
- Assembling a team to ensure quality and performance
- Examining common design features of Passive Houses

Elements of Passive House Design
- Siting, sizing and orientation
- Super-insulated envelope with minimized thermal bridging
- Efficient mechanical ventilation
- Ultra-efficient lights, fixtures and appliances - plug loads
- Summer shading and cooling strategies
- Winter solar gain and heat retention strategies
- Integrating renewable energy technologies

Mechanical Systems in Passive House
- Heat exchangers
- Supplemental space conditioning for micro loads
- Renewable energy system integration

Evaluating Passive House Case Studies
- Adapting Passive House for local climate
- Case studies: in the planning process, under construction and finished projects

Learning Objectives

You’ll be able to:

Explore the history of energy-conserving residential construction, and explore the development of the Passive House Standard.

Understand the requirements of Passive House, a voluntary performance-based building envelope energy standard.

Discuss energy calculation tools and review design features common to Passive Houses.

Integrate renewable energy technologies into your Passive House design.

Evaluate mechanical systems, including heat exchangers.

Adapt Passive House for local climates.

Passive House: Planning and Design
Roanoke, VA - Wednesday, August 7, 2019

Understanding the energy efficiency of conventional construction
Examine the purpose, principles and development of the Passive House Standard
Identify elements of Passive House design

Professional Engineers
6.5 Continuing Ed. Hours

Architects
6.5 HSW Continuing Ed. Hours
6.5 AIA HSW Learning Units

Construction Contractors
Non-Credit Continuing Ed.

Learn about mechanical systems in Passive Houses
Explore winter solar gain and summer shading strategies
Discuss case studies that illustrate the planning process, construction techniques and finished projects

Presented by Jason Morosko, MSME, CPHC

Understanding the Energy Efficiency of Conventional Construction
- Conventional residential energy use
- History of energy-conserving residential construction
- Energy conservation incentives
- Current weatherization tactics

Passive House Standard: Purpose, Principles and Development
- History of certifying agencies in US: PHI and PHIUS
- Passive House Standard: voluntary performance-based building envelope energy standard
- Passive House energy calculations
- Energy calculation tools: an introduction to tools and their functionality
- Assembling a team to ensure quality and performance
- Examining common design features of Passive Houses

Elements of Passive House Design
- Siting, sizing and orientation
- Super-insulated envelope with minimized thermal bridging
- Efficient mechanical ventilation
- Ultra-efficient lights, fixtures and appliances - plug loads
- Summer shading and cooling strategies
- Winter solar gain and heat retention strategies
- Integrating renewable energy technologies

Mechanical Systems in Passive House
- Heat exchangers
- Supplemental space conditioning for micro loads
- Renewable energy system integration

Evaluating Passive House Case Studies
- Adapting Passive House for local climate
- Case studies: in the planning process, under construction and finished projects

Learning Objectives

You’ll be able to:

Explore the history of energy-conserving residential construction, and explore the development of the Passive House Standard.

Understand the requirements of Passive House, a voluntary performance-based building envelope energy standard.

Discuss energy calculation tools and review design features common to Passive Houses.

Integrate renewable energy technologies into your Passive House design.

Evaluate mechanical systems, including heat exchangers.

Adapt Passive House for local climates.

Passive House: Planning and Design
Roanoke, VA - Wednesday, August 7, 2019

Understanding the energy efficiency of conventional construction
Examine the purpose, principles and development of the Passive House Standard
Identify elements of Passive House design

Professional Engineers
6.5 Continuing Ed. Hours

Architects
6.5 HSW Continuing Ed. Hours
6.5 AIA HSW Learning Units

Construction Contractors
Non-Credit Continuing Ed.

Learn about mechanical systems in Passive Houses
Explore winter solar gain and summer shading strategies
Discuss case studies that illustrate the planning process, construction techniques and finished projects

Presented by Jason Morosko, MSME, CPHC

Understanding the Energy Efficiency of Conventional Construction
- Conventional residential energy use
- History of energy-conserving residential construction
- Energy conservation incentives
- Current weatherization tactics

Passive House Standard: Purpose, Principles and Development
- History of certifying agencies in US: PHI and PHIUS
- Passive House Standard: voluntary performance-based building envelope energy standard
- Passive House energy calculations
- Energy calculation tools: an introduction to tools and their functionality
- Assembling a team to ensure quality and performance
- Examining common design features of Passive Houses

Elements of Passive House Design
- Siting, sizing and orientation
- Super-insulated envelope with minimized thermal bridging
- Efficient mechanical ventilation
- Ultra-efficient lights, fixtures and appliances - plug loads
- Summer shading and cooling strategies
- Winter solar gain and heat retention strategies
- Integrating renewable energy technologies

Mechanical Systems in Passive House
- Heat exchangers
- Supplemental space conditioning for micro loads
- Renewable energy system integration

Evaluating Passive House Case Studies
- Adapting Passive House for local climate
- Case studies: in the planning process, under construction and finished projects

Learning Objectives

You’ll be able to:

Explore the history of energy-conserving residential construction, and explore the development of the Passive House Standard.

Understand the requirements of Passive House, a voluntary performance-based building envelope energy standard.

Discuss energy calculation tools and review design features common to Passive Houses.

Integrate renewable energy technologies into your Passive House design.

Evaluate mechanical systems, including heat exchangers.

Adapt Passive House for local climates.
Additional Learning

Webinar Series
International Existing Building Codes
- Working with the International Existing Building Code
 Thurs., June 20, 2019, 11:00 AM - 12:30 PM CDT
- Chapters 3, 4 & 6
 Thurs., June 20, 2019, 1:00 - 3:00 PM CDT
- Chapters 7-10: Alterations and Occupancy
 Fri., June 21, 2019, 11:00 AM - 1:00 PM CDT
- Chapters 11, 12 and 16: Additions and Historic Buildings
 Fri., June 21, 2019, 1:30 - 3:00 PM CDT

Retaining Structures
- Earth Pressures and Surcharges
 Wed., June 26, 2019, 11:00 AM - 12:30 PM CDT
- Cantilever & Apparent Earth Pressures
 Wed., June 26, 2019, 1:00 - 2:30 PM CDT
- Apparent Earth Pressures
 Thurs., June 27, 2019, 11:00 AM - 12:30 PM CDT

Industrial Stormwater
- Understanding the Federal Industrial Stormwater Program
 Thurs., June 27, 2019, 11:00 AM - 12:50 PM CDT
- Examining Stormwater Pollutants and the Development of Total Maximum Daily Loads (TMDLs)
 Thurs., June 27, 2019, 1:00 - 2:00 PM CDT
- Creating Stormwater Pollution Prevention Plans (SWPPP's)
 Fri., June 28, 2019, 11:00 AM - 12:00 PM CDT
- Implementing Best Management Practices (BMP's), Sampling and Reporting
 Fri., June 28, 2019, 12:30 - 2:00 PM CDT

For more information and other online learning opportunities visit: www.halfmoonseminars.org/webinars/

Continuing Education Credit Information
This seminar is open to the public and offers 6.5 continuing education hours to professional engineers and architects (HSW) in all states. Educators and courses are not subject to preapproval in Virginia.

This event has been approved by the American Institute of Architects for 6.5 HSW Learning Units (Sponsor No. 1885). Only full attendance can be reported to the AIA/CES.

HalfMoon Education is an approved continuing education sponsor for engineers in Florida, Indiana (License No. CE21700059), Maryland, New Jersey (Approval No. 24GP00000700), North Carolina, and North Dakota.

This seminar offers a non-credit continuing education opportunity to construction contractors; it has not been approved by any state contractor licensing entity for continuing education purposes.

This event has been approved by the American Institute of Architects for 6.5 HSW Learning Units (Sponsor No. 1885). Only full attendance can be reported to the AIA/CES.

Can't Attend? Order the Manual and Audio from the Live Seminar as a Self-Study Package!
Audio recordings of this seminar are available for purchase starting at $269. See registration panel for more information and please refer to specific state licensing rules or certification requirements to determine if this learning method is eligible for continuing education credit.

Holiday Inn Roanoke
3315 Oldway Drive
Roanoke, VA 24017
(Toll Free) 362-4500

Registration
Registration
8:00 - 8:30 am
Lunch (Del your own)
11:45 am - 12:05 pm
8:30 - 11:45 am
Morning Session
12:45 - 4:30 pm
Afternoon Session

Tuition
$289 for individual registration
$269 for three or more simultaneous registrations.

Included with your registration:
Complimentary continental breakfast and printed seminar manual.

Receive a reduced tuition rate of $197 by registering to be our on-site coordinator for the day. For availability and job description, please visit www.halfmoonseminars.org.

How to Register
- Visit us online at www.halfmoonseminars.org
- Mail-in or fax the attached form to 715-835-6066
- Call customer service at 715-835-5900
- Complete the entire form. Attach duplicates as necessary.

Registrant Information
Name:__
Company/Firm:_________________________________
Address:______________________________________
City________________________State__________Zip____
Phone:__
Email:__

Additional Registrants:
Name:__
Occupation:___________________________________
Address:______________________________________
City________________________State__________Zip____
Phone:__
Email:__

How to Pay
Checks: Make payable to HalfMoon Education Inc.
Credit Card: Mastercard, Visa, American Express, or Discover

Tuition
- I will be attending the live seminar. Single Registrant - $289.00. Three or more registrants from the same company registering at the same time - $269.00 each.
- I am not attending. Please send me the self-study package:
 □ Downloadable MP3 Audio/PDF Manual for $269.00.
 □ CD/Manual Package for $289.00.
 (S&H included. Please allow five weeks from seminar date for delivery)

Checks: Make payable to HalfMoon Education Inc.
Credit Card: Mastercard, Visa, American Express, or Discover
Credit Card Number:______________________________
Expiration Date:________________________CV2 Code:______
Cardholder Name:_________________________________
Billing Address:___________________________________
City________________________State__________Zip____
Signature:_______________________________________
Email:__

© 2019 HEI #19 VAPSVHSE 8 7 ROKE JB