Soil Mechanics, Slope Stabilization, Failures & Repairs

Goleta, CA - Tuesday, April 28, 2020

Review slope mechanics and soil classification
Use soil investigation techniques such as drilling and boring
Examine causes of slope instability

Reinforce slope stability using geosynthetics
Explore earth structure failures and fixes

Continuing Education Credits
Professional Engineers
7.0 Continuing Ed. Hours

Landscape Architects
7.0 LA/CES HSW PDHs

Floodplain Managers
7.0 ASFPM CECs

Learn to visually identify geosynthetics as to type, method of manufacture, relative strength, relative permeability, and relative cost

Earth Structure Failures and Fixes / Site Layout and Prevention
How to prevent a potential problem or failure
How to recognize a potential problem or failure in the field
Typical causes of problems or failures with geotechnical structures
Case studies/examples of failures and repairs

Learning Objectives

You’ll be able to:

Explain the importance of recognizing soil properties, as well as the need to investigate soil composition before undertaking site development.

Identify types of slopes and use soil investigation techniques, such as drilling, boring and test pits, to evaluate site soils.

Prevent slope failures, recognize potential problems in the field, and determine causes of slope instability.

Explore strategies to improve or restore slope stability, including vegetation and the use of geosynthetic materials.

Presented by Bill Simpson

Slope Mechanics and Classification
Properties of soil
- Importance of recognizing soil properties
- Formation of soils
- Types of soils
Soil investigation
- Site reconnaissance
- Geology and visual observations
- Drilling and boring
- Test pits
- Establishing appropriate investigational methods
- Obtaining and reviewing geotechnical reports

Slope Stability Analysis
Fundamental soil characteristics and slope instability
Engineering mechanics underlying slope instability
Geologic conditions and construction practices
Field observations to distinguish types of instability
Construction practices to improve or restore stability
Examining causes of slope instability
Slope stability analysis
Use of vegetation
Surface protection
Evaluating types of slopes
Natural slopes
Engineered slopes

Reinforced Slope Stability Analysis
Calculations and software
Geosynthetic materials
Alternatives
Exercise
Learn to visually identify geosynthetics as to type, method of manufacture, relative strength, relative permeability, and relative cost

Soil Mechanics, Slope Stabilization, Failures & Repairs
Goleta, CA - Tuesday, April 28, 2020

Reinforce slope stability using geosynthetics
Explore earth structure failures and fixes

Soil Mechanics, Slope Stabilization, Failures & Repairs
Goleta, CA - Tuesday, April 28, 2020

Review slope mechanics and soil classification
Use soil investigation techniques such as drilling and boring
Examine causes of slope instability

Reinforce slope stability using geosynthetics
Explore earth structure failures and fixes

Continuing Education Credits
Professional Engineers
7.0 Continuing Ed. Hours

Landscape Architects
7.0 LA/CES HSW PDHs

Floodplain Managers
7.0 ASFPM CECs

Learn to visually identify geosynthetics as to type, method of manufacture, relative strength, relative permeability, and relative cost

Earth Structure Failures and Fixes / Site Layout and Prevention
How to prevent a potential problem or failure
How to recognize a potential problem or failure in the field
Typical causes of problems or failures with geotechnical structures
Case studies/examples of failures and repairs

Learning Objectives

You’ll be able to:

Explain the importance of recognizing soil properties, as well as the need to investigate soil composition before undertaking site development.

Identify types of slopes and use soil investigation techniques, such as drilling, boring and test pits, to evaluate site soils.

Prevent slope failures, recognize potential problems in the field, and determine causes of slope instability.

Explore strategies to improve or restore slope stability, including vegetation and the use of geosynthetic materials.
Faculty

Bill Simpson
Engineered Earth Solutions, LLC

Mr. Simpson is a geotechnical structure design specialist at Engineered Earth Solutions. He designs and reviews shop drawings for construction and repair of earth structures in the public and private sectors in over 30 states, and he consistently works on more than 1,200 projects and 10 million square feet each year. He performs site visits for new project reconnaissnace, construction verification, and construction assistance. Mr. Simpson manages, supervises, instructs, and mentors a team of staff engineers to ensure strict deadlines are met for construction schedules while ensuring design and analysis accuracy. He works with owners, site designers, and contractors to provide designs which are not only structurally sufficient but also financially responsible. Mr. Simpson earned his B.S.C.E. and M.S.C.E. degrees from Georgia Institute of Technology.

Seminar Information

Courtyard Santa Barbara Goleta

Registration

Lunch (On your own)

8:00 - 8:30 am

12:00 - 1:00 pm

Morning Session

8:30 am - 12:00 pm

1:00 - 5:00 pm

Afternoon Session

8:30 am - 12:00 pm

1:00 - 5:00 pm

Tuition

$299 for individual registration

$278 for three or more simultaneous registrations.

Included with your registration:

Complimentary continental breakfast and printed seminar manual.

Receive a reduced tuition rate of $101

Complimentary continental breakfast and printed seminar manual.

Included with your registration:

Complimentary continental breakfast and printed seminar manual.

Receive a reduced tuition rate of $101

Continuing Education Credit Information

This seminar is open to the public and offers a continuing education opportunity to California professional engineers, landscape architects, and floodplain managers. Continuing education is not required for license maintenance or renewal in California. This course is not eligible for California’s architect continuing education requirement.

This seminar is approved by the American Institute of Architects Continuing Education System for 7.0 HSW PDHs. Visit www.halfmoonseminars.org for complete AIA/CES information under this course listing. Only full attendance is reportable to the AIA/CES and LA/CES.

This event has been approved by the Association of State Floodplain Managers for 7.0 CECs.

Professionals engineers, landscape architects, and architects seeking continuing education credit in other states will be able to apply the hours earned at this seminar, in most cases. Refer to specific state rules to determine eligibility.

Attendance will be monitored, and attendance certificates will be available after the seminar for most individuals who complete the entire event. Attendance certificates not available at the seminar will be mailed to participants within fifteen business days.

Can’t Attend? Order the Manual and Audio from the Live Seminar as a Self-Study Package!

Audio recordings of this seminar are available for purchase starting at $279. See registration panel for more information and please refer to specific state licensing rules or certification requirements to determine if this learning method is eligible for continuing education credit.

Tuition

| 1 | I will be attending the live seminar. Single Registrant - $299.00. Three or more registrants from the same company registering at the same time - $279.00 each.
| | I am not attending. Please send me the self-study package:
| | | Downloadable MP3 Audio/PDF Manual for $279.00
| | | CD/Manual Package for $299.00
| | | USB/Manual Package $299.00
| | (I & | Included. Please allow five weeks from seminar date for delivery)

Checks: Make payable to HalfMoon Education Inc.

Credit Card: Mastercard, Visa, American Express, or Discover

Credit Card Number:

Expiration Date:

CVV2 Code:

Cardholder Name:

Billing Address:

City:

State:

Zip:

Signature:

Email:

© 2020 HEI *20 CASMSSFR 4 2B GLTA LH